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A study is made of equilibrium in a homogeneous elastic medium containing a thin inclusion whose elastic 

moduli differ substantially from those of the medium. The solution depends on two non-dimensional 

parameters: the ratio 6, of the characteristic linear dimensions of the inclusion and the ratio & of the elastic 

moduli of the inclusion and the medium. While 6, is always small, 6? may be either small or large. The 

problem of constructing the principal asymptotic terms of the elastic fields in the neighbourhood of a thin 

inhomogeneity based on these parameters has been reduced [l] to the solution of integral (pseudodifferen- 

tial) equations on the middle surface of the inclusion. Similar equations are obtained with two-dimensional 

models of thin inclusions [2-51. Some properties of the solutions of these equations will be discussed below. 

A method is proposed for the numerical solution of the equations, based on introducing a special class of 

approximating functions, thanks to which the problem can be reduced to a system of linear algebraic 

equations whose matrix can be calculated by analytical means. The idea of the method is due to V. G. 

Maz’ya. 

1. INTEGRAL EQUATIONS FOR THIN DEFORMABLE AND RIGID INCLUSIONS 

A HOMOGENEOUS elastic medium with tensor of moduli CO contains an inclusion that occupies a 
bounded region V, one of whose characteristic dimensions h is small compared with the other two 
(of order r), so that S1 = h/l is a small parameter. The inclusion is ideally connected to the medium 

t Prikl. Mat. Mekh. Vol. 56, No. 2, pp. 275-285, 1992. 
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along its boundary; its elastic properties are defined by a tensor of moduli C. We wish to solve the 
problem of elastostatics for the medium with the inclusion under a given external load. 

For applied problems of the mechanics of composites we are particularly concerned with thin 
inclusions whose elastic moduli differ substantially from those of the medium. In such situations the 
parameter 6*, defined as the ratio between the characteristic moduli of the inclusion and the 
medium [S, = O(CC,-’ )] is either small (compliant inclusions) or large (rigid or stiff inclusions). 

We might remark that the most valuable information concerning the elastic fields in the neighbourhood of 
thin inclusions is provided by the principal terms of the asymptotic expansions of the fields in terms of Si and S2 _ 
To construct these terms one has to find a solution of the problem in the limit as Si-+O, &-+O (or &_--+ m) with 
the quotient 6,/?& remaining fixed, equal to its value for the inclusion. This asymptotic solution describes the 
elastic fields at distances from the inclusion surface that exceed its characteristic transverse dimension h; it is of 
particular interest when one is formulating criteria for the brittle fracture of bodies with inclusions [2], dealing 
with the average properties of media with several thin inclusions, etc. 

We will begin with thin compliant inclusions, for which S2 is small. We shall assume that the 
middle surface 1R of the inclusion is a Lyapunov surface, bounded by a closed contour I, n (x) is the 
continuous vector field of the normal, defined on $A and x = (x1, x2, x3) is a typical point of the 
medium. It has been shown [l] that the principal terms of the asymptotic expansions in terms of 6, 
and az of the strain field E(X) and the stress field u(x) in a medium with a thin deformable inclusion 
are as follows: 

cab (x) = e,B (x) + K,B~,, (x - x’) C~“pnv (x’) b, (x’) dR 

CT’@ (x) = a:” {x} + A’@‘@ (x-x’) nL (2”) b, Ix’) dR 

where Ed and @e(x) are the external fields of strains and stresses which would exist in the medium 
were it not for the inhomogeneity and the external loads, G(x) is Green’s function for a 
homogeneous medium with moduli C0 and 8 (x) is a three-dimensional delta-function. We know [6] 
that G(x) is an even homogeneous function of degree - 1 whose Fourier transform is 

The vector field b (x)-the density of the potentials in (l.l)-satisfies the following equation on fi 

[ll: 
Xaf’ (5) be (2) + 

I 
2’“” (x, .2”) b0 (5’) dCt’ = n0 (5) c$’ (2). x E 0 

(1.2) 

where h (x) is the transverse dimension of the inclusion along the normal n(x) to 0 at x E tilt. 
The reader should note that the operator T may be written only formally as an integral operator with kernel 

T(x, x’), because the integral in question diverges for xESl for arbitrarily smooth functions b(x) 
(T(x, x’) - 1 x -x’ 1-j as x’-+.x). It can be shown [7] that T is a pseudodifferential operator with a smooth 
homogeneous symbol-a homogeneous function of degree I. ft has also been shown [7, Xl that T admits of a 
regular representation for functions b(x) that have a continuous derivative along fi. lt follows from the general 
theory of equations of type (1.2) (91 that the additional condition b(x) = 0 for x E r will ensure uniqueness of 
the solution. 

It can be shown [l] that if b(x) satisfies condition (1.2), the strain and stress fields (1.1) 
correspond to a solution of the following boundary-value problem of elasticity theory: determine 
the vector field of displacements u(x) by solving the Lame equations for a homogeneous medium 
with moduli Co and prescribed external load, on the assumption that the following conditions hold 

on 0: 

(1.3) 
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where [f(x)] denotes the jump in f(x) across fi at a point x in the direction of the normal, and X(X) 
has the form of (1.2). A heuristic approach proposed in (2, 3] to the solution of the thin inclusion 
problem involves replacing the inclusion with its middle surface on the assumption that boundary 
conditions of type (1.3) are satisfied. If X(X) = 0, conditions (1.3) and therefore also the 
representations (1.1) and Eq. (1.2) describe a crack in a homogeneous elastic medium. 

We will now consider the case of stiff inclusions-large 8 2. The principal terms of the asymptotic 
expansion of the strain and stress fields (the limits of E (x) and o(x) as St-+ 0, Fiz--+ ~0, 6, S2 = 0 (1) > 
wili then be 

cap (4 = eona (2) f 1 Kapnr (x - 5’) Q&H (5’) da' 
n 

azfi (r) -;;1 u;~ (3) + s Sap”‘ (t - 2’) C&,,pqv (x’) do’ 
n 

where q(x) is the tensor of the surface R: 

Ra(Zt)qa8(5)=0, e,,a~(5)q~(z)=q=~(I) 

O(x) is the orthogonal projection onto the tangent plane to 1R at X: 

e(5)=e(nj=E,--2E,(n)+E,(n), n=n(s) 

E 14!3b==&&r, &fxt&, (n) =~(&)~L%), EsabLP(n) =n,n$z&?z, 

and 6,a is the Kronecker delta. 
The field q(x) satisfies the following equation in 0: 

(1.4) 

(1.5) 

Paekw (4 @’ (4 + 5 uaps.p (r, z’) @‘+ (s’) dQ’ = 0:; (2) Q&W {z) (1.6) 
n 

trap&p (4 =z h-’ (5) &it (z) G&%~ @)t uap.N = C+i$ (z) K,*pr6 (t - 5’) S$ (2’) 

The general operator U with kernel U(X,X’) is a pseudodifferential operator with principal 
homogeneous symbol-a homogeneous function of degree 1. A regular representation of this 
operator, over continuously differentiable functions q(x) along a, has been established [l]. 
Equation (1.6) has a unique solution in the class of functions such that e,(x)q"p(x) = 0 on I’, where 
e(x) is the normal to I? in the tangent plane to fi at X. 

Using the properties of the potentials on the right of Eqs (1.4), it can be shown [l] that, if the 
density p(x) satisfies Eq. (1.6), then the fields E (x) and u(x) correspond to the following 
boundary-value problem of elasticity theory: solve the Lame equations for a homogeneous medium 
with moduli C, under a given external load, on the assumption that the following boundary 
conditions are satisfied on the surface R (indices are omitted for simplicity): 

[u(@I=o, [e(X)e(~)]=O, e(2)e(~)=IL(~)Q(~) (1.7) 

where p_(x) is of the form (1.6) and q(x) is the tensor of the surface s1 (1.5) and satisfies the 
following condition on R: 

QP(~) =-ln&,a”(t, 1, &=V,--n,(z)~@(~)Vp (1.8) 

Here 3, is the gradient along 0. The right-hand side of the first equality in (1.8) is the jump of the 
stress vector across Sz. 

It has been shown [l] that the components of q(x) have the meaning of integral stresses (forces) acting across 
sections of the thin inclusion, and then (1.8) is the equiiib~um equation for these forces. A similar equation 
holds for the forces in a thin elastic shell in a torque-free stressed state [IO]. Thus, conditions (1.7) and (1.8) 
describe a torque-free elastic shell (membrane) in contact with a homogeneous eiastic medium. The first two 
equations of (1.7) should then be understood as compatibitity conditions for the strains of the inclusion and the 
medium, while the last equation is Hooke’s law for the inclusion. If p = 0, Eqs (1.7) and (1.8) are boundary 
conditions for an inextensible membrane sealed into a homogeneous elastic medium. In the two-dimensional 
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problem conditions similar to (1.7) and (1.8) have been proposed to simulate thin rectilinear inclusions in an 
elastic plane [4]. 

2. ASYMPTOTIC BEHAVIOUR OF EQS (1.2) AND f 1.6) AT THE EDGE OF THE 

INCLUSION 

With regard to the numerical solution of Eqs (1.2) and (1.6) it is useful to have information about 
the structure of the solution near the boundary of the surface 0. We will therefore consider the 
asymptotic behaviour of the solutions near a smooth part of the boundary contour 1’. We will 
rewrite the equations in symbolic form as 

~.(5)b(~)+(Tb)(s)=n(rc)o,(r), 

~(Z)Q(~)-+(~Q) (~)=0(X)Eo(5) (2.1) 

Let us assume that the transverse dimension h(x) of the inclusion is a smooth bounded function 
which may be expressed in the neighbourhood of the boundary of the surface s1 in the form 

h(s)=h,~(z,)r’+0~r7+‘), +j>o (2.2) 

where r is the distance from x E R to x0 E R along the normal to r and ho (xc,) is a smooth function on 
I?. We will consider the asymptotic behaviour of continuous bounded solutions of Eqs (2.1) in the 
neighbourhood of a smooth part of r for such functions h(x), ft follows from the general theory of 
elliptic pseudodifferential equations [9] that the solutions of Eqs (2.1) near r are identical in the 
asymptotic limit with the solutions of the following model problems. Introduce a local Cartesian 
system of coordinates at xu E r, say yi, yz, y3, with the y2 axis directed along the tangent to T at x0, 
the y3 axis along the limiting normal to f2 at x0; then the yt axis lies in the tangent plane to 52 at x0. 
The model problems require the soiution of Eqs (2.1) in the half-plane (yj = 0, -m <yz< m, 
y, >O), with the right-hand sides dependent only on yl and the functions h(y) and p(y) given by 

31(y)=hoy,7, lie=h*-‘jsc,)rLnCno 

(2.3) 
p,.(y) =)li$,-r* CL”=h,-‘(s,)ejn,)C-‘B(n,), ns=n(50) 

The solutions of Eqs (2.1) will then also depend only on y, . The asymptotic behaviour of these 
solutions as y,--+O and of the solutions of Eqs (2.1) as x+x(,Efi are the same [9]. 

Let us consider the model equation corresponding to a stiff inclusion (compliant inclusions were 
discussed in [S]). Substituting (2.3) into the second equation of (2.1), integrating with respect to y2 
and noting that q (y ) = q (y, ), we obtain the following equation (yr = t): 

(2.4) 

u, = p;’ 5 0(n,)K(i, ~s,O)O(n,)dy,* f w = CL;‘0 (no) Eo 
. 

where K(x, , x2, x3) is the kiynel of the integral operator in the first equation of ( 1.1). 
The integral operator in (2.4) is defined for the continuously differentiable bounded function 4 (f) 

by the formula [8] 

where the integral on the right should be understood in the sense of the Cauchy principal value. 
To determine the asymptotic behaviour of the solution of Eq. (2.4) as t-+0 we can use the results 

of [S], where a similar equation was considered. It turns out that the form of the asymptotic 
expansion depends on the form of the inclusion boundary, that is, on the exponent y in formula 
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(2.2) for h (x>. If the boundary is “blunt” (0~ y < l), the behaviour of the solutions of Eq. (2.4) as 

t4 0 is described by 

q(t)=q,t”+O(l”-1) 

If the boundary has a cusp (y > l), the asymptotic behaviour is described by the relation 

q(t) =qol:+O(P-‘) 

For a cuspidal inclusion (y = I), 

g(t) =q,t-‘l+q,t-*l+O(t-dl) 

where sl and s2 are the roots in the strip -1 <Res< -l/2 of the transcendental equation 

detf8(n,)+snctg(sn)Uol=O (2.5) 

The tensors 8(no) and iJ0 are defined in (1.5) and (2.4) and So is a root of the same equation in the 
strip -2 < Res < -%. For isotropic media and inclusions the exponents s1 , s2 and s3 are the roots of 
independent equations 

tgsn = - 7 (2 - r,’ s, t.gsn=---, I=$. X0= &I+ k 
8E F, ho + 2P, 

which follow from (2.5). Here ho and h are the Lam6 coefficients of the medium and + is the shear 
modulus of the inclusion. Similar results have been obtained for compliant inclusions [2,8]. 

3. NUMERICAL SOLUTION OF EQS (1.2) AND (1.6) 

The class of inclusions for which Eqs (1.2) and (1.6) can be solved by analytical means is exhausted by thin 
ellipsoidal inclusions in a polynomial external field (81. If the inclusion is not ellipsoidal, one must resort to 
numerical methods. In that case it is quite useful to treat the solution of Eqs (1.2) and (1.6) in a variational 
setting. 

Let us consider T and U in Eqs (1.2) and (1.6) as operators in the Hilbert space L,(a) = H(a) [9]. We may 
assume that T and U are defined in a dense subspace of Z.Q (ti)--the space Co” (f2) of infinitely differentiable 
compact-supported functions with support in the interior of R. For such functions the action of T and U is 
defined by the reguiarization formulas (2.6) and (2.14) of fl]. It can be shown that Tand 0 are symmetric and 
positive definite, that is, 

where the equality will hold only if b = 0 and 4 = 0. That T has this property has been proved [7]; the proof for 
U is analogous. The operators Tck, and UcIL) in (1.2) and (1.6) ( Tcx, = h + T, Ucu-) = p + U) differ from T and Y 
by positive definite terms and are therefore also positive. Hence it follows [ll] that the solutions of Eqs (1.2) 
and (1.6) minimize the functionals 

F,,, fq) = (#‘~~~~~qA~) q=@dQ--2 xc&‘eor,#‘dQ I 
II 0 

Consequently, b(x) and q(x) may be constructed by direct variational methods. The variational setting has 
been used [12] to solve a crack problem (A = 0). The validity of an analogue of the finite element method, 
based on a variational approach, for crack problems has been established in [23,14]. 

Another way to solve Eqs (1.2) and (1.6) employs a scheme usually applied to boundary integral equations in 
elasticity theory 11.51. The surface R is divided into N disjoint domains 0,,, so that Sz = U&, . The solutions are 
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approximated by linear combinations of standard functions with unknown coefficients within each 0,. 
Substituting the approximation into the initial equation and requiring the equation to hold true at a finite 

number of nodes, one obtains a system of linear algebraic equations for the coefficients. The problems involved 
in the implementation of this technique to solve crack problems in elastic media were discussed in [7, l&18]. 

The main difficulties arise in computing the matrix coefficients of the above-mentioned system of linear 
algebraic equations, since the coefficients near the diagonal are integrals of rapidly varying functions over the 
domains Q. In three dimensions, a sufficiently accurate determination of such integrals requires a large volume 
of computations, even when the approximating functions in R, are as simple as possible (piecewise constant). 

4. A SPECIAL CLASS OF APPROXIMATING FUNCTIONS 

We will now introduce a class of approximating functions, by means of which the solution of Eqs 
(1.2) and (1.6) can be reduced to a system of linear algebraic equations with an analytic matrix. 

Let R be a plane domain in R3 or a straight-line segment in R2. The kernels T(x, x’) and U(x, x’) 
of T and U will then depend solely on the difference between the arguments, so the operators 
themselves may be treated as convolution operators defining b(x) and 4 (x) as zero outside a. If b 
and q are of class S(R”) (n = 1, 2) (infinitely differentiable functions that tend to zero as /X I+ 00 
faster than any power of IX 1-l ), then T and I/ can be defined by the formulas 

(Tb) (z) - 
I 7 

(2n)” _~ T* (k) b* (k) e-ikx dk I 
U* (k) q* (k) e-ikx dk 

(4.1) 

The integrals extend over the whole plane (n = 2) or straight line (n = 1) and may be understood 
in the usual sense, T*(k) and U*(k) are homogeneous of degree l-the Fourier transforms of T(x) 
and U(x). 

Consider the case II = 1 (the two-dimensional problem), letting R be the interval 1 x 1 d 1 in the 
(x, y ) plane. We will look for a solution of Eqs (1.2) and (1.6) as series 

b (5) = J: b’f (5 -Zi)r 
I=1 

where Xi = -1 + h(i- Vi) are the interpolation points, h = l/N is the step length and D is the 
standard deviation. The solutions are assumed to have this particular form because the action of the 
operator T of (4.1) on a function f(x -x,) (fE S(R1)) is defined by the fairly simple relationship 

(Tf) (z)=A [ 1_2~iexp(-_5i2)Erfi(~i) 1, E~=(z--xi)‘/(h’D) 

where A is a known constant and Erfi(&) is the probability integral of an imaginary argument. The 
image of f(x -Xi) under U is similar. 

Let us consider the approximation (4.2) in detail. Let u(x) be a smooth function whose first and 
second derivatives are bounded for x E (- CQ, ~0). We have the following representation.? 

II (.z) - ut, (I) + R (I), 
I “” 

U/,(5) == - c ~Jwa ),,=_-oo 
u(mh)f(s-mmh) (4.3) 

iR(z) I< (Ilu/\+IIu'II)Ro(D, h)+]]u”]]h*D/4, MD, h)=O(exp(--x’D)) (4.4) 

where ]lul] is the norm in the space of continuous functions. Thus, when u(x) is approximated by a 
series uh (x) as in (4.3), the error depends on two parameters: the standard deviation D and the step 
length h of the approximation. 

IVIL’CHEVSKAYA Ye. N. and KANAUN S. K., Computation of elastic fields in the vicinity of thin inclusions and 

cracks in a continuous medium. Preprint No. 57, Leningrad Department of the Institute of Mechanical Engineering, 

Leningrad, 1991. 
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h=O.O3 

FIG. 1. 

Let us see how the approximation (4.3) works for a specific example, defining U(X) as a unit impulse: 
U(X) = 1 for /x ) c 1, u (x) = 0 for /x I> 1. The results for different D and h values are shown in Fig. 1; the left 
sector of the figure (X < 0) shows plots of the function u (x) - u,,(x) for a fixed step length h = l/SO and different 
standard deviations D; the right sector shows the analogous plots for fixed D = 2 and different hs. Obviously, 
the region of the largest error is concentrated around the points x = + 1. If h is of the order of 0.03, so that the 
number of terms remaining on the right of (4.3) is about 60, then the smallest error of the approximation (4.3) 
is achieved at D = 2 (in which case 1 u(x) - uh (x) / < 0.05). 

We will now proceed to solve Eq. (1.2) using the approximation (4.2). We begin with the 
two-dimensional problem, again letting R be the interval 1x1 S 1, y = 0, in the (x, y) plane. For an 
isotropic medium and a plane deformation the kernel T(X) of Tin (1.2) is 

(43) 

where x- * should be understood as a generalized function whose Fourier transform is IT / k I. If the 
inclusion is also isotropic, with Lame coefficients X and k and transverse dimensions h (x) = hoa (x), 
where 01 (x) is a non-dimensional function of the shape of the inclusion [IX(X) = O(l)], then the 
vector equation (1.2) can be separated into two independent equations: 

&A(x) X, ’ ba (5’) -- 
ais) n \ (x-x')2 

d.d=f,(s), Is\<1 (a= 1,2) 
-'m 

l+J-----, 
hopoXo 

A=kf2P 
2 

%lPo ’ 

(4.6) 

These equations take into account that b(x) = 0 for Ix) > 1. Substituting b(x) from (4.2) into the 
equations, using (4.1) and requiring the validity of the equations at the interpolation points xi, we 
obtain a system of linear algebraic equations for the approximation coefficients b’: 

2N 

) 
-‘A:b,‘=f,“, fur~==fa(xk), (a==1,2), k=l,...,2N 

;d 
(4.7) 

I=1 

-+& [i -_il; exp (- Efk) Erfi (his)], Eik = 33 hD!i 

The matrix Aaki of this system is completely full, symmetric, and diagonally dominant. The best 
method for solving system (4.7) is the Seidel method [19]. 
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To improve the accuracy of the computations, it is advisable, using the results of Sec. 3 and [S], to 

express b (x) as 

b(z)=p(z)(l--2*)+J (4.8) 

where the second factor on the right reflects the asymptotic behaviour of the solution at the edges 
x = + 1 of the inclusion, f+ = f for f> 0, f+ = 0 for f< 0. The new unknown function is B (x). Using 

the approximation (4.2) for each of the functions B(X) and (1 -x2)+‘, we can reduce the problem to 
the solution of a system similar to (4.7) whose matrix can also be determined by analytical means. 
Details may be found in the paper cited in the earlier footnote, where the efficiency of the method is 

also demonstrated by the results of actual computations. 
We will now proceed to the three-dimensional problem. For simplicity, we shall consider a crack 

with the plane surface R. If the medium is isotropic, the Fourier transform T*(k) of T(x) in (1.2) 

has the following form [k = k(ki . k,)]: 

T*“~(li)=‘j,p”~k~[6Q~+x”(n%~+m=m~)], nP=r;U/lkl 

where n is the normal to R. 

(4.9) 

As in the two-dimensional problem, we will look for a solution of Eq. (1.2) with h(x) = 0, in the 
following form (xi, x2 are Cartesian coordinates in the plane of the crack): 

b (5,, x-2) = ;c: bi (z,, 22) (4.10) 

i-1 

bi (xl, x2) = b’ exp - -Dh2 _ __ 
( 

(z, - Xi,\2 fx, - X;$ 

I 1 D&s2 ) 

where (xii, xi2) are the coordinates of the interpolation points and hi and h2 are step lengths in the 
directions of x1 and x2. We then choose the standard deviations D1 and D2 and step lengths h, and 
h2 so that h12D1 = h22D2 = 40. Substitute the series (4.10) into Eq. (1.2) and use the definition 
(4.1) of T and the expression (4.9) for T*(k). Requiring the equation to hold true at the 
interpolation points xk, we obtain the following system of equations for the coefficients b’ in (4.10): 

(4.11) 

Aki = g exp (- Eki) (2 [(i - 2Eki) 10 (Etii) + 2EkiJl (Eki)] (sap + wW t 

where e, and e2 are unit vectors in the xl and x2 directions and Jo and Ji are Bessel functions. 
As in the case of the plane problem, the actual computation of the solution should make 

allowance for the asymptotic behaviour of b(x) near the edges of the crack, expressing b(x) as 
b(x) = p(x, ,x2) xf+ (x1, x2), wheref, is a known function describing the behaviour of the solution 
as x-+I. Details, including results of actual computations, may be found in the paper cited in the 
earlier footnote. 

To conclude, we point out that the method can also be used to solve Eqs (1.2) and (1.6) for a 
non-planar surface LI. The elements of the matrix of the system of linear algebraic equations to 
which the original problem is reduced may then be found in analytical form, though the latter is 
more cumbersome than (4.11). 
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